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Problem

Problem

Given n points and integers k, s, t, determine the minimum cost
circle with center C and radius r that contain k points where the
cost is calculated as:

cost(C , r) = s · d((0, 0),C ) + t · r
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Observation 1

The optimal circle has at least 1 point on the perimeter.
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Observation 1

The optimal circle has at least 1 point on the perimeter.
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Subtask 1: t ≤ s

If t ≤ s, then the solution is the distance to the kth closets point
times t. Running time O(n lg n) for sorting.

We can therefore assume t > s from this point onward. So
increasing the circle is more expensive than moving the center.
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Observation 2

The optimal circle has at least 2 points on the perimeter.
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Observation 2

The optimal circle has at least 2 points on the perimeter.
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Observation 3

The optimal circle either:

Has at least 3 points on the perimeter, or

is the minimal cost center on some bisector between two
points p and q, such that p and q lies on the perimeter.
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Observation 3

The optimal circle either:

Has at least 3 points on the perimeter, or

is the minimal cost center on some bisector between two
points p and q, such that p and q lies on the perimeter.
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Subtask 2: n ≤ 50, s = 0

Check all O(n3) candidates for centers with 3 points, each in O(n)
time. Optimal cost between two points lie directly between them.
Check all O(n2) candidates in O(n) time, for total time O(n4).

Subtask 4: n ≤ 50

As before, but optimal cost between two points is found through
ternary search on bisector. Check all O(n2) candidates in
O(n + lg ϵ−1) time, for total time O(n4).
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Subtask 5: n ≤ 350

For every bisector between points p and q, for each r of all other
points, determine the interval of the bisector where r is contained
in a circle with center on the bisector and p and q on the
perimeter. Determine all points overlapped by k intervals. Can be
done in O(n3 lg n) time.
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Idea for s = 0

Fix r . Determine whether there exists a circle with radius r that
contain k points. Use this to binary search r .
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Subtask 3: s = 0

Fix r and some point p. Sweep a circle of radius r around p,
containing p on the perimeter. For each other point, determine the
angle interval where the circle contains p. Determine if there exist
k overlapping intervals. Binary search r and iterate p. Running
time O(n2 lg ϵ−1 lg n)
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Subtask 6: ϵ = 1/10

Fix c and some point p. Sweep a circle of cost c around p,
containing p on the perimeter. For each other point, determine the
angle interval where the circle contains p. Determine if there exist
k overlapping intervals. Binary search c and iterate p. Gives a
running time of O(n2 lg ϵ−2).
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Subtask 6: ϵ = 1/10

Fix c and some point p. Sweep a circle of cost c around p,
containing p on the perimeter. For each other point, determine the
angle interval where the circle contains p. Determine if there exist
k overlapping intervals. Binary search c and iterate p. Gives a
running time of O(n2 lg ϵ−2).
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Subtask 6: ϵ = 1/10

Fix c and some point p. Sweep a circle of cost c around p,
containing p on the perimeter. For each other point, determine the
angle interval where the circle contains p. Determine if there exist
k overlapping intervals. Binary search c and iterate p. Gives a
running time of O(n2 lg ϵ−2).

Subtask 7: No further constraints

Same as subtask 6, but observe that we for each point p can
determine the best cost that has p on the perimeter and contains
k points. They have some ordering. Like starring contest, if we
shuffle the points, we only expect to O(lg n) times observe a lower
cost. Gives a running time of O(n2 lg ϵ−1 + n lg ϵ−2 lg n)
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Staring Contest
Task: Determine ￼  (distinct integers), from 
 queries of the form ￼  with ￼ . Minimize #queries.
Note: ￼  can never be determined, so one underestimate is allowed. 
Note: Problem is non-adaptive (￼  fixed from beginning).

a = (a1, …, an)
q(i, j) = min(ai, aj) i ≠ j

max a
a

for ￼
for ￼

￼

i ∈ {1,…, n − 1}
j ∈ {i + 1,…, n}

Qij = Qji = q(i, j)

First solution: Perform all ￼  many comparisons:(n
2)

Q 1 2 3 4 5

1 17 32 32 21

2 17 17 17 17

3 32 17 51 21

4 32 17 51 21

5 21 17 21 21

1 2 3 4 5

a 32 17 51 52 21



Staring Contest
Task: Determine ￼  (distinct integers), from 
 queries of the form ￼  with ￼ . Minimize #queries.
Note: ￼  can never be determined, so one underestimate is allowed. 
Note: Problem is non-adaptive (￼  fixed from beginning).

a = (a1, …, an)
q(i, j) = min(ai, aj) i ≠ j

max a
a

#queries ≤ 3N:  
Invariant: Maintain j, k such that ￼  maximal among ￼ . 
Increment i, update j, k according to q(i,j), q(i,k), q(j,k)

aj, ak (a1, …, ai)

1 2 3 4 5

a 32 17 51 52 21

1 2 3 4 5

a 32 17 51 52 21

i

j k

#queries ≤ 2N:  
Observation: One of the three queries is redundant



Staring Contest
Randomised algorithm:  
Idea: Choose “next index” i randomly, not left to right.
As before, maintain ￼
Query ￼

mjk = min(aj, ak)
mik = min(ak, ai)

1 2 3 4 5
a 32 17 51 52 21

🙂: If ￼  we’ve learned ￼  and can proceed to the next i
☹: If ￼  we must also query ￼

min(ak, ai) = mjk ak
min(ak, ai) > mjk mjk = min(aj, ak)

How often does ☹ happen?  
Exactly if ￼  is largest or next-largest among ￼ .

Pr (☹ in round i) = 2/i
ai (a1, …, ai)

E[#☹ in round i] = 2/i

E[#☹ in any round] = ￼
2
3

+
2
4

+
2
5

+ ⋯ +
2
n

∼ 2 ln n

Variance (thanks to team Latvia): 

￼Pr[ |X − EX | ] ≤ 14 ln N] ≤
22

196 ln N
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b distance to base n hiding spots p pulse period d pulse damage

Subtask 1 Try waiting 0,1, . . . ,p − 1 seconds. The i-th hiding spot helps
only when waiting a[i] mod p seconds. O(p + n)

Subtask 3 Dijkstra/DP over states (position, time until next pulse). O(b p)

Observations

Only wait at hiding spots. Wait until right after the next pulse.

Subtask 2 Try all 2n subsets of hiding spots. O(2n · n)

April 29, 2023 BOI 2023 – Solution Presentation 2Tycho



b distance to base n hiding spots p pulse period d pulse damage

Subtask 1 Try waiting 0,1, . . . ,p − 1 seconds. The i-th hiding spot helps
only when waiting a[i] mod p seconds. O(p + n)
Subtask 3 Dijkstra/DP over states (position, time until next pulse). O(b p)

Observations

Only wait at hiding spots. Wait until right after the next pulse.

Subtask 2 Try all 2n subsets of hiding spots. O(2n · n)

April 29, 2023 BOI 2023 – Solution Presentation 3Tycho



b distance to base n hiding spots p pulse period d pulse damage

Subtask 1 Try waiting 0,1, . . . ,p − 1 seconds. The i-th hiding spot helps
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b distance to base n hiding spots p pulse period d pulse damage

Dynamic Programming

DP[i]: minimum damage taken after waiting at i-th hiding spot.

DP[i] = min
j<i

(
DP[j] +

⌈a[i]− a[j]
p

⌉
· p︸ ︷︷ ︸

environment

+
⌈a[i]− a[j]

p

⌉
· d − d︸ ︷︷ ︸

radiation pulses

)

= min
j<i

(
DP[j] +

⌈a[i]− a[j]
p

⌉
· (p + d)− d

)

Subtask 4 DP in O(n2).
Subtask 5 For each a[j] mod p, check only the latest j . O(n p)
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b distance to base n hiding spots p pulse period d pulse damage

DP[i] = min
j<i

(
DP[j] +

⌈a[i]− a[j]
p

⌉
· (p + d)− d

)
⌈a[i]− a[j]

p

⌉
=
⌊a[i]

p

⌋
−
⌊a[j]

p

⌋
+

{
1 a[i] mod p > a[j] mod p
0 otherwise

DP[i]−
⌊a[i]

p

⌋
· (p + d)︸ ︷︷ ︸

depends on i

= min
j<i

(
DP[j]−

⌊a[j]
p

⌋
· (p + d)︸ ︷︷ ︸

depends on j

+

{
p + d . . .

0 . . .

}
︸ ︷︷ ︸

range query

)
− d

→ Range min-query on [0,a[i] mod p) and [a[i] mod p,p).
Subtask 6 Min-segment tree over a[j] mod p. O(p + n log p).
Subtask 7 Coordinate Compression / Implicit segment tree. O(n log p)
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Subtask 1 The tree is a path. Start at one end. Answer: n · (n − 1)/2.
Subtask 2 The tree is a subdivision of a star. Start at the leaf on the
longest “arm”.

Subtask 3 Brute force: try all orders. Õ(n!)

Observations

An optimal solution traverses every tunnel at most twice. Then, only the
choice of starting hall matters. (proof later)

Subtask 4 DFS from every hall. O(n2)
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Claim: Only starting hall matters

Root the tree at the starting hall. The total spill is at least
∑

u<v s(u, v)
where

s(u, v) =


0 u or v is the root
1 u, v are ancestors/descendants
2 u, v are incomparable

If every tunnel is visited at most twice, the total spill is exactly
∑

u<v s(u, v).

Let p = parent(u).
Consider spill at v when
traversing e = {p,u}.

p

u

v

1 0

spill: 1+0

p

u v

1 1

spill: 1+1
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Claim: Only starting hall matters

Root the tree at the starting hall. The total spill is at least
∑

u<v s(u, v)
where

s(u, v) =


0 u or v is the root
1 u, v are ancestors/descendants
2 u, v are incomparable

If every tunnel is visited at most twice, the total spill is exactly
∑

u<v s(u, v).

Subtask 5 Root the tree arbitrarily. Compute ans[root ] and subtree sizes
with DFS. Then

ans[u] = ans[parent(u)] + 2 · size[u]− n.
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Problem

Problem

There are k hidden points (x1, y1), . . . , (xk , yk).
Access to following query for:

Ask((s1, t1), . . . , (sd , td)) ={|si − xj |+ |ti − yj |
for (i , j) ∈ {1, . . . , d} × {1, . . . , k}}

Determine the hidden points, minimising the number of queries.
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Subtask 1: k = 1,w = 104

We can with the two queries

Ask((−b,−b)) = a

Ask((−b, b)) = c

uniquely determine the single point
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Observation 1

If we were to ask the queries

Ask((−b,−b)) = a1, . . . , ak

Ask((−b, b)) = c1, . . . , ck

Then for each hidden point (xi , yi ) there exists a pair of distances
cs , dt , such that those would be returned if (xi , yi ) was the only
hidden point.
Trying all pairs of distances gives k2 candidate points. This is a
superset of the hidden points.

Observation 2

If you ask a query Ask((s1, t1), . . . , (sd , td)), then the number of
times 0 occurs in the answer corresponds to the number of mineral
deposits in (s1, t1), . . . , (sd , td).
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Subtask 2: w ≥ 500

Reduce to k2 candidate points. Ask a query for each of them. If
the result contains a 0, queried point is a mineral deposit.
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Subtask 2: w ≥ 500

Reduce to k2 candidate points. Ask a query for each of them. If
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Subtask 3:w ≥ 210

Reduce to k2. We can locate 1 point in ⌈lg(k2)⌉ queries. Split k2

candidates in two sets and query one of them. Then we can
determine if there is a mineral deposit in this set or the other one.
Once we have located a deposit, never ask about it again.

Subtask 4:w ≥ 130

Same as before, but count the number of mineral deposits in each
set, and find all of them at once.

Honorable mention: Random selection

If you simply select a random candidate point, query it, and then
remove inconsistent candidate points, this will perform better than
the binary search based solutions.
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Aside

Some of you have seen the following puzzle: Cover all 9 dots with
only 4 lines.

You have to think outside the box, and we will do the same.
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Observation

Let (u, v) be the right-most candidate point. Then placing a point
at coordinate (b + x , v) for some x , tells us whether (u, v) is a
deposit.
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Observation

Let (u, v) be the right-most candidate point. Then placing a point
at coordinate (b + x , v) for some x , tells us whether (u, v) is a
deposit.
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Subtask 5: w ≥ 3, b ≤ 104

Process candidates from right to left. On the same y coordinate as
the candidate, place outside the query point. If the distance
between the query points are at least 5b, then the distance in the
response can each be associated with a query point. E.g. the
query points become (x , 5b), (y , 10b), (z , 15b), .... Query the
points

For each candidate, if the distance between the associated
query point and the candidate is in the result of the query, it is a
deposit. Then undo all distances that are a result of this deposit.
Uses distances of O(k2b) outside the b-box
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Subtask 6: w ≥ 3, b ≤ 107

Same idea as before. Observe that we can instead compute all the
k2 distances that could arise from each query point. Determine the
smallest distance that hasn’t been generated further away than the
previous point and place it there. It can be shown that this uses
query points of at most k4 distance outside the b-box.
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Observation

We can reduce to 4k2 query points using only a single query, by
combining the two queries into one and taking every possible
combination of distances.

Subtask 7: No further restrictions

Observe that when b is very large, there is going to be a lot of
empty space. Do essentially the same as subtask 6, but in all 4
directions at the same time. You have to make sure that the
points remain uniquely decodeable while placing new query points.
You also have to make sure that new query points are not too
close to candidate points, and that you don’t duplicate some
important distances.
Running time: Depending on implementation either O(k4) or
O(k6).
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Sequence
Given: Positive weights ￼w = (w1, …, wn)

Define: weight of index sequence ￼  as

￼

x = (x1, …, xm)
W(x) = wx1

+ … + wxm

Task: given ￼  and index v, compute ￼w min
x∈G : v∈x

W(x)

Define: index sequence ￼  is good if ￼  or  

￼

x = (x1, …, xm) x = (1)

xj = {
xj−1 + 1 or

xk ⋅ xl for some k ≤ l < j
increment (indigo)

multiply (maroon)

Good: 
1

1 1

1 2

1 2 2

1 2 3

1 2 4

1 2 4 5

1 2 4 8

1 2 4 16

Not good: 
1 3

Small n: Systematically generate all short good sequences by following the two rules

Too slow: Systematically generate all 1010 index sequences of length at most 
10 and check each for goodness.



Sequence
Given: Positive weights ￼w = (w1, …, wn)

Define: weight of index sequence ￼  as

￼

x = (x1, …, xm)
W(x) = wx1

+ … + wxm

Task: given ￼  and index v, compute ￼w min
x∈G : v∈x

W(x)

Define: index sequence ￼  is good if ￼  or  

￼

x = (x1, …, xm) x = (1)

xj = {
xj−1 + 1 or

xk ⋅ xl for some k ≤ l < j
increment (indigo)

multiply (maroon)

Good: 
1

1 1

1 2

1 2 2

1 2 3

1 2 4

1 2 4 5

1 2 4 8

1 2 4 16

Observation: ￼  
• Ignore ￼  if it is “supersequence” of other ￼ 

• Can assume ￼  is strictly increasing (speeds up generation)

• Can assume ￼  is last index ￼

wi > 0 ⇒
x y ∈ G

x
v xm

1 2 3

1 2 4

1 2 2 4

1 2 4 5

1 2 3 4 5



Uniform weights
Given: Positive weights ￼w = (w1, …, wn)

Define: weight of index sequence ￼  as

￼

x = (x1, …, xm)
W(x) = wx1

+ … + wxm

Task: given ￼  and index v, compute ￼w min
x∈G : v∈x

W(x)

Define: index sequence ￼  is good if ￼  or  

￼

x = (x1, …, xm) x = (1)

xj = {
xj−1 + 1 or

xk ⋅ xl for some k ≤ l < j
increment (indigo)

multiply (maroon)

Good: 
1

1 1

1 2

1 2 2

1 2 3

1 2 4

1 2 4 5

1 2 4 8

1 2 4 16

Simpler task: Find shortest good sequence ending in v.
1 2 3

1 2 4

1 2 2 4

1 2 4 5

1 2 3 4 5

￼(w1 = ⋯ = wn)

￼= w1 ⋅ |x |

￼= wi ⋅ min
(x1,…,v)∈G

|x |

v < 300: Just do it.

v < 1439: Sequence lengths are ￼ . Precompute all 
of them on your machine in an hour. 

|x | ≤ 14



Intended solution
Given: Positive weights ￼w = (w1, …, wn)

Define: weight of index sequence ￼  as

￼

x = (x1, …, xm)
W(x) = wx1

+ … + wxm

Task: given ￼  and index v, compute ￼w min
x∈G : v∈x

W(x)

Define: index sequence ￼  is good if ￼  or  

￼

x = (x1, …, xm) x = (1)

xj = {
xj−1 + 1 or

xk ⋅ xl for some k ≤ l < j
increment (indigo)

multiply (maroon)

Good: 
1

1 1

1 2

1 2 2

1 2 3

1 2 4

1 2 4 5

1 2 4 8

1 2 4 16

generator extend(￼ ):

yield(￼ )

for ￼ 


for ￼ 

yield(￼ )

x1, …, xj
x1, …, xj, xj + 1

k ∈ {2,…, j}
j ∈ {k, …, j}

x1, …, xj, xk ⋅ xl

Generalise problem: for index subset 
￼  define 

￼

A ⊆ {1,…, n}

F(A) = min
x∈G : A⊆x

W(x)

Original problem: compute ￼ .F({v})

F(A ∪ {ak}) = wak
+ min {

F(A ∪ {ak − 1})
min1<i≤ j≤ak : ij=ak

F(A ∪ {i, j})



Why is this fast?

F(A ∪ {ak}) = wak
+ min {

F(A ∪ {ak − 1})
min1<i≤ j≤ak : ij=ak

F(A ∪ {i, j})

{154} 

{153} 

{9, 17} 

{11, 14} {7, 22} 

{11, 13} 

{11, 12} 

{11} 

{9, 16} 

{2, 8, 9} 

{2, 8} 

{2, 4} 

{2} 

{1} 

🤯
a1 ⋅ ⋯ ⋅ ak ≤ v ≤ n

Invariant

Careful analysis (Team Poland): 

￼ne2⋅ log n

Good exercise (induction, calculus):

at most poly(n) such sets 


